Analysis of Large-scale Traffic Dynamics using Non-negative Tensor Factorization
نویسندگان
چکیده
In this paper, we present our work on clustering and prediction of temporal dynamics of global congestion configurations in large-scale road networks. Instead of looking into temporal traffic state variation of individual links, or of small areas, we focus on spatial congestion configurations of the whole network. In our work, we aim at describing the typical temporal dynamic patterns of this network-level traffic state and achieving long-term prediction of the large-scale traffic dynamics, in a unified data-mining framework. To this end, we formulate this joint task using Non-negative Tensor Factorization, which has been shown to be a useful decomposition tools for multivariate data sequences. Clustering and prediction are performed based on the compact tensor factorization results. Experiments on large-scale simulated data illustrate the interest of our method with promising results for long-term forecast of traffic evolution.
منابع مشابه
Analysis of Large-Scale Traffic Dynamics in an Urban Transportation Network Using Non-Negative Tensor Factorization
In this paper, we present our work on clustering and prediction of temporal evolution of global congestion configurations in a large-scale urban transportation network. Instead of looking into temporal variations of traffic flow states of individual links, we focus on temporal evolution of the complete spatial configuration of congestions over the network. In our work, we pursue to describe the...
متن کاملStatistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization
Statistical traffic data analysis is a hot topic in traffic management and control. In this field, current research progresses focus on analyzing traffic flows of individual links or local regions in a transportation network. Less attention are paid to the global view of traffic states over the entire network, which is important for modeling large-scale traffic scenes. Our aim is precisely to p...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملA New Traffic-Mining Approach for Unveiling Typical Global Evolutions of Large-Scale Road Networks
In this paper, we present a new traffic-mining approach for automatic unveiling of typical global evolution of large-scale road networks. Our method uses as input a history of continuous traffic states (typically measured by travel times) of *all* links of the road graph. This historical data concatenated in a link/time matrix is then approximated with a locality-preserving Non-negative Matrix ...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1212.4675 شماره
صفحات -
تاریخ انتشار 2012